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[1] One of the challenges in the design and selection of remediation activities for
subsurface contamination is dealing with manifold uncertainties. A scientifically defensible
decision process demands consideration of the uncertainties involved. A nonprobabilistic
approach based on information gap (info-gap) decision theory is employed to study the
robustness of alternative remediation activities. This approach incorporates both parametric
and nonparametric (conceptual) uncertainty in predicting contaminant concentrations that
are effected by natural processes and the remediation activities. Two remedial scenarios are
explored to demonstrate the applicability of the info-gap approach to decision making
related to groundwater remediation.
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1. Introduction

[2] Remediation of anthropogenic subsurface contami-
nation is a significant challenge facing the world [NRC,
2013; R€ugner et al., 2006]. For many contaminated sites,
the available data and documentation of various parameters
characterizing contaminant releases such as magnitude,
timing, spatial distribution, and contents are limited [Pierce
et al., 2009]. There is also limited site information about
the geological, hydrological, and biogeochemical condi-
tions; information that is necessary for a complete under-
standing of contaminant transport and its impact on the
environment. It is well recognized that the environmental
management of contaminated sites requires robust decision
analysis tools based on risk assessment and taking into
account existing budget constraints [NRC, 2013, 1999].
The site and technological complexities require data-driven
and model-driven decision analyses for environmental
management in which limited site information and physics
models are coupled to perform scientifically defensible and
legally sound risk assessment and decision analysis. How-
ever, such theoretical methodologies and computational
tools for subsurface contaminant remediation that explicitly
account for lack of or limited knowledge about the govern-
ing process and their parameters are often insufficient
[Agostini et al., 2009a, 2009b; Argent et al., 2009; Deeb
et al., 2011; Jordan and Abdaal, 2013; NRC, 1999; Tarta-
kovsky, 2007; Bolster et al., 2009].

[3] A crucial component of any decision analysis for
remediation of contaminated sites is predicting the future
fate of the contaminant plume. However, predicting contam-

inant concentrations in the subsurface is fraught with uncer-
tainties. Typically, there is uncertainty in present size, shape,
and location of a contaminant plume. There is also uncer-
tainty in the rates at which the contamination plume will
evolve in time. Frequently, the plume fate is controlled by
an advective velocity field, biogeochemical reaction rates,
and dispersion coefficients or tensors as well as their tempo-
ral and spatial variations. As a result, making decisions
related to contaminant remediation is challenging as well.

[4] Severe parametric uncertainties make it difficult to
make accurate model predictions going forward. They may
make it extremely difficult to effectively characterize the
uncertainties probabilistically. In a high-dimensional space
with heavy-tailed probability distributions, it can be chal-
lenging to obtain a representative sample. There has been
progress in reducing the computational cost of this process
[cf. Tonkin and Doherty, 2009; Laloy and Vrugt, 2012],
but it remains computationally demanding. The effect of
this is that important events in the tails can be overlooked.

[5] On top of parametric uncertainties, there are model
uncertainties related to conceptual assumptions. These arise
from a lack of comprehensive understanding about the
processes governing the contaminant migration in the sub-
surface and their upscaled representation in predictive
models. Frequently, the conceptual uncertainties are
handled by defining a range of alternative models repre-
senting site conditions and governing physical processes
[Ye et al., 2004]. However, some or all of the proposed site
models might be inadequate. Inadequate models may be
able to represent existing site observations very well, but
fail to make defensible predictions about future plume fate.
As a result, even the best models may suffer from some
degree of inadequacy [Beven and Westerberg, 2011].
Model uncertainty also creates additional problems for the
probabilistic approach to parameter uncertainty. In particu-
lar, the models under consideration may not be sufficient to
characterize the set of all possible outcomes. High-
probability events may not be accounted for at all, and all
the events that are accounted for could have a low cumula-
tive probability.
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[6] There are additional uncertainties (e.g., arising from
observation or numerical computational errors, etc.). These
will not be the focus of attention here. Observational uncer-
tainties can be accounted for during the model selection
and calibration phase which we do not consider. The model
and parametric uncertainties under consideration are likely
to dominate uncertainties associated with things like
numerical errors.

[7] Owing to the multitude of uncertainties, model pre-
dictions are uncertain and may not provide sufficient sup-
port when making decisions about contaminant
remediation strategies. In consequence, it is necessary to
account for the prediction uncertainty in the decision pro-
cess. There are numerous methods that have been designed
to achieve this, e.g., Caselton and Luo [1992]; Hipel and
Ben-Haim [1999]; Bolster et al. [2009]; Reeves et al.
[2010]; and Harp and Vesselinov [2013].

[8] A good review of dealing with uncertainty in surface
and subsurface hydrology is presented in Montanari et al.
[2009]. Perhaps the most common approach to quantifying
uncertainty is with probability and statistics [see e.g., Del-
homme, 1979; Dagan, 1982; Wagner and Gorelick, 1987;
Abbaspour et al., 1997; Keating et al., 2010]. In the pre-
sented setting, this approach could be applied, e.g., by asso-
ciating probability distributions with each model
parameter. A more intricate approach would be to associate
a probability distribution with a class of models, and then
associate probability distributions with each parameter for
each model [Neuman, 2003; Ye et al., 2004; Morales-Casi-
que et al., 2010; Singh et al., 2010]. The probabilistic
approach is natural and powerful if the probability distribu-
tions are known [Bedford and Cooke, 2001], but this is
often not the case. A common way to resolve this difficulty
is to apply Bayes theorem with a uniform prior. The uni-
form prior is not ideal because there is no basis for its defi-
nition. However, Bayes theorem has the potential to
overcome this limitation if enough data are available to
make the posterior distribution converge to the true distri-
bution. In subsurface transport data tend to be scarce, so
this generally does not occur. Even if sufficient data are
available to compute an accurate posterior, the result is
often that nearly all of the probability is concentrated on a
single model. Ideally this would happen because the most
likely model is essentially correct, but it is also possible
that the most likely model is merely less inadequate than
the others.

[9] In practice, it is often problematic to formulate rea-
sonable probability distributions for a multitude of parame-
ters and/or models. In such cases, a nonprobabilistic
approach may be used. The nonprobabilistic approaches do
not require prior probabilistic information about uncer-
tainty in parameters and models. Here, we present a non-
probabilistic analysis of remedial alternatives related to
groundwater contamination based on information gap
(info-gap) decision theory [Ben-Haim, 2006]. In the context
of contaminant remediation, this approach essentially looks
for the worst-case scenario as a function of the unknown
horizon of uncertainty. Multiple models fit naturally into
this paradigm through its definition of the decision robust-
ness which will be discussed in greater detail. Early appli-
cations of info-gap theory to environmental management
were carried out in Hipel and Ben-Haim [1999] and Levy

et al. [2000]; watershed and forest (respectively) manage-
ment under severe uncertainty were considered. Building
on this work, info-gap has also been applied to flood risk
management decisions [Hine and Hall, 2010] and revegeta-
tion strategies after wildfires [McCarthy and Lindenmayer,
2007]. Further research demonstrated the utility of using
the info-gap approach to ecological experimental design
[Fox et al., 2007]. Recently, info-gap has been applied to
contaminant remediation by considering uncertainty in the
source of the contamination [Harp and Vesselinov, 2013].

[10] We build upon Harp and Vesselinov [2013] by con-
sidering a more extensive uncertainty model that includes
parametric uncertainty in the dispersion as well as model
uncertainty (including in the source of the contamination)
as well as considering two remediation alternatives that
have different costs associated with their implementation.
The results are analytical in nature. Though the physics-
based model that we use is fairly simple, more complex
models are included within the info-gap uncertainty model.
The model was chosen not because of the limitations of the
info-gap approach, but to provide a better demonstration of
a relatively novel method for decision analysis which oth-
erwise may be difficult to understand. More complex
physics or uncertainty models may be analytically intracta-
ble, but computational methods can be used when this
occurs. The computational cost has the potential to be very
high if there are many parameters or many local extrema.
However, it is generally less expensive than Bayesian
methods. This is because the entire parameter space does
not need to be sampled—only an optimization routine must
be performed.

2. Methodology

[11] Application of info-gap decision theory can be
briefly summarized as:

[12] 1. Formulate ‘‘performance requirements’’ (i.e.,
‘‘decision goals’’)

[13] 2. Construct an uncertainty model.
[14] 3. Determine the robustness to uncertainty: the

maximum ‘‘horizon of uncertainty’’ up to which perform-
ance requirement will be satisfied.

[15] After these steps have been performed, the robust-
ness to uncertainty can be used to inform a decision. The
purpose of finding the robustness is to see how far the sys-
tem can deviate from the nominal case (analogous to a
point estimate in a probabilistic approach) before the per-
formance requirement fails. When comparing remediation
strategies, one that has greater robustness (requires more
uncertainty before the performance requirement is not sat-
isfied) would be seen as better. This is analogous in some
ways to preferring a remediation strategy that has a smaller
maximum likelihood of failure in a probabilistic approach,
but the info-gap approach does not require the definition of
any probabilities.

[16] When choosing a remediation strategy where the
budget is the primary constraint, it is best to choose the
strategy that provides the greatest robustness within
the budget. When choosing a remediation strategy where
the need for robustness is the primary constraint, it is best
to choose the strategy that provides sufficient robustness at
the lowest cost.
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[17] In the context of contaminant remediation, formulat-
ing a performance requirement is often easy. Usually, the
contaminant concentrations are required to be below some
threshold such as a Maximum Concentration Limit (MCL)
for drinking water supply (EPA, 2013, http://water.epa.
gov/drink/contaminants/) at a point of compliance. Suppose
for the demonstration purposes that the performance
requirement is that the model predicted concentration, ~C , at
a point of compliance at xc for a given time range, tc0 ; tc1ð Þ,
be below the threshold Cc. In the broadest case, the compli-
ance time range can be from 0 to 1 ; a narrower case, can
be defined where tc0 and tc1 are certain moments of time in
the future. Once the performance requirement is deter-
mined, the next step is to construct an uncertainty model.

[18] In info-gap decision theory, the uncertainty model
depends on a parameter called the ‘‘horizon of uncer-
tainty,’’ which we will denote � throughout. It is often
desirable to make � nondimensional, and we will employ
this practice.

[19] Generally in an info-gap model, the most challeng-
ing step is determining the greatest horizon of uncertainty
for which the performance requirement is guaranteed to be
satisfied. The maximum horizon of uncertainty (or robust-
ness) tells us how much uncertainty must be present before
the performance requirement is not satisfied. When com-
paring two remediation strategies, it is prudent to choose
the one that requires more uncertainty in order to fail (all
else being equal). Determining the robustness may require
complex analytical approaches or computationally demand-
ing numerical exploration of parameter space within the
horizon of uncertainty to find the worst (and best) possible
model predictions within a given horizon of uncertainty.

[20] In hydrology and many other fields, it is common to
‘‘minimize uncertainty’’ when selecting models. That is, to
choose a model or model parameters that minimize some
objective function measuring the discrepancy between
measurements and model predictions. The model/parame-
ter selection process is outside the scope of this paper, and
can be carried out using any number of methods.

[21] Below we will construct two alternative setups of
the info-gap analyses with different levels of complexity;
in each case, the robustness is estimated analytically. The
first is an oversimplified model to demonstrate the info-gap
process. The second uses a physics-based model of subsur-
face contaminant advection-reaction-diffusion.

3. Info-Gap Analyses

3.1. Illustrative Info-Gap Analysis

[22] To get a better understanding of an info-gap deci-
sion framework, consider a typical info-gap uncertainty
model for a parameter p

Pð�Þ5 p :

���� p2~p

~p

���� � �
� �

; � � 0 (1)

where ~p is the ‘‘nominal’’ value of p, i.e., the p that would
be used if only one p value could be considered. Here and
henceforth ~�ð Þ is used to denote a ‘‘nominal’’ value, that is,
a value considered to be representative of our current
understanding of the site conditions and based on which a

decision can be made. However, the amount of discrepancy
between the ‘‘nominal’’ and ‘‘true’’ value for each parame-
ter is unknown. In info-gap theory, one evaluates the
robustness to the uncertainty around the nominal model.
The info-gap analyses can be performed from a series of
different nominal values which will provide more detailed
estimation of decision uncertainties. This uncertainty
model Pð�Þ includes all values of p that are within a
fractional error less than � from ~p. Depending on the con-
text, a different uncertainty model could be constructed
that reflected a different understanding of the uncertainty
involved.

[23] Suppose, again for demonstration purposes, that a
simple linear model is used to predict the contaminant con-
centration [M/L3]

Cðx; pÞ5C02px (2)

where x> 0 is some lateral distance from the contaminant
source [L], and p> 0 here represents a forcing parameter
that causes contaminant migration [M/L4]. The concentra-
tion at the source is C0 [M/L3]. The shape and size of the
contaminant source is not considered and is irrelevant in
this simple example. The value of p must be positive so
that the concentration C (x ; p) declines with the traveled
distance x away from the source (the source is at x 5 0).

[24] The maximum horizon of uncertainty (denoted �̂)
for which the performance requirement (Cðxc; pÞ < Cc,
where xc is the point of compliance) holds is

�̂ð~pÞ5max � : max
p2Pð�Þ

Cðxc; pÞ
� �

< Cc

� �
(3)

[25] If the set that the maximum is taken over is empty,
i.e., if Cðxc; ~pÞ � Cc, then by convention, �̂50. This can
occur only if the nominal value does not satisfy the per-
formance requirement (i.e., ~p � C02Cc

xc
). Assume that the

nominal value does satisfy the performance requirement. In
order to determine �̂, it is necessary to first compute

max
p2Pð�Þ

Cðxc; pÞ5C02max ½0; ð12�Þ~p�xc (4)

[26] Setting the maximum concentration equal to Cc and
solving for �, we obtain

�̂ð~pÞ5 Cc2C01~pxc

~pxc
(5)

where it has been assumed that C0 > Cc. Essentially what �̂
tells us is the greatest tolerable relative error in p before the
concentration at xc exceeds the threshold, Cc. The robust-
ness as a function of ~p is plotted in Figure 1 under the
assumption that C0525; ½M=L3�, Cc55; ½M=L3� and
xc510; ½L�.

[27] The same problem can be explored using the same
linear model for the concentration, but with a more exten-
sive uncertainty model. Let

Fð�Þ5 C :

����Cðxc; �Þ2~Cðxc; pÞ
~Cðxc; pÞ

���� < �; for some p 2 Pð�Þ
( )

; � � 0

(6)
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be a new uncertainty model that includes both parametric
uncertainty and uncertainty in the functional form of the
model; in the equation above, Cðxc; �Þ is a model prediction
based on an implicit, unspecified model and set of model
parameters (which may or may not include p), and ~Cðxc; pÞ
is a prediction based on equation (2) where p is within the �
horizon of uncertainty of ~p. Uncertainty in the functional
form is included because Fð�Þ includes functions (i.e.,
models for predicting the contaminant concentration Cðxc; �Þ
at xc) that do not have the functional form of equation (2).
However, all the conceptual models need to be bounded
within the info-gap uncertainty bound defined in equation
(6). Note that the horizon of uncertainty, �, is unknown,
reflecting the fact that we do not know how much the nomi-
nal model errs.

[28] With this new uncertainty model, the robustness is
given by

�̂ð~pÞ5max � : max
C2Fð�Þ

CðxcÞ
� �

< Cc

� �
(7)

[29] Following a procedure similar to before, we first
compute the inner maximum. This computation proceeds
by first finding the value of p 2 Pð�Þ that maximizes C02p
xc which was previously determined to be p5max
ð12�Þ~pf g (from equation (2), making p as small as possi-

ble, makes the prediction as large as possible). From there,
it is seen that the choice of Cðx; �Þ 2 Fð�Þ that maximizes
the prediction is Cðx; �Þ5ð11�ÞCð~x; pÞ. Therefore,

max
C2Fð�Þ

CðxcÞ5ð11�ÞðC02max ½0; ð12�Þ~p�xcÞ (8)

5ð11�ÞC02max ½0; ð12�2Þ~p�xc (9)

where we have assumed that C0 > Cc=2 (i.e., the concen-
tration at the source is at least half the MCL) and C02~pxc

� Cc (i.e., the nominal prediction of the concentration at
the point of compliance is not above the MCL). Then we
compute the outer maximum by setting the inner maximum
equal to the MCL (Cc) and solving (taking the positive
root)

�̂ð~pÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

014~pxc½Cc2C01~pxc�
p

2C0

2~pxc
(10)

[30] The robustness function associated with this setup is
also plotted in Figure 1.

[31] Two interesting features are noted in Figure 1. First,
as already discussed, the robustness is 0 for ~p � 25 C02Cc

xc
.

This is because for ~p � 2, the nominal prediction is above
the threshold. Hence failure to meet the performance
requirement is expected, and there is no robustness. The
second feature is that the robustness increases at a slower
rate (with respect to ~p) when uncertainty in the functional
form (conceptual model) is included. This is natural,
because including uncertainty in the functional form
accounts for the possibility of more things going wrong.
That is, the use of the nominal parameter ~p could be too
high (making the prediction too low) and the linear model
may be inadequate (perhaps further making the prediction
too low). This info-gap model accounts for both possibil-
ities whereas the first info-gap model only accounted for
uncertainty in ~p. Consistent with the case of decision
robustness (Figure 1), the maximum predicted concentra-
tion within a given horizon of uncertainty is higher when
model uncertainty is included (Figure 2). Regardless of its
simplicity, this info-gap analysis demonstrates the power of
the proposed technique and the importance of incorporating
model uncertainty in decision analyses. A more compli-
cated model for predicting contaminant concentrations is
applied for info-gap analysis in the next section.

3.2. Model-Based Info-Gap Analysis

[32] The model used in this section is the solution of the
reaction-advection-diffusion partial differential equation
(PDE)

@C

@t
52u

@C

@x
1Dx

@2C

@x2
1Dy

@2C

@y2
1Dz

@2C

@z2
2kC1

I

h
(11)

on an infinite domain and the concentration is initially zero
until the source I adds mass at t 5 0 so that
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Figure 1. Robustness curves of the two info-gap models
as a function of nominal p ð~pÞ with C0 5 25, Cc 5 5, and
xc 5 10.
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Cðx; y; z; tÞ5

ðt

0

ð
R3

Iðx0; y0; z0; t2sÞexp 2ks2
ðx2x02usÞ2

4Dxs
2
ðy2y0Þ2

4Dys
2
ðz2z0 Þ2

4Dzs

h i
dx0 ds

s3=2

8p3=2h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DxDyDz

p (12)

is the concentration of a contaminant at location x5ðx; y; zÞ
at time t> 0, k is a half-life decay constant (T21) represent-
ing the rate of zero-order biogeochemical reactions (if
k 5 0, there is no reaction), Dx, Dy, and Dz are dispersion
coefficients (L2/T) in the x, y, and z directions, respectively,
u is an advective (linear) velocity (L/T) in the x direction,
and h is the porosity [2] [Wang and Wu, 2009]. Iðx; y; z; tÞ
is an instantaneous contaminant source at t 5 0. Here, it
can be represented as a Gaussian plume as present at time 0

Iðx; y; z; tÞ5 Mð12qÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8p3r2

xr
2
yr

2
z

q

exp 2
ðx2x0Þ2

2r2
x

2
ðy2y0Þ2

2r2
y

2
ðz2z0Þ2

2r2
z

 !
dðt20Þ

(13)

where M is the contaminant mass (M), q is the fraction of
the contaminant mass that has been removed [2], (x0, y0,
z0) is the central location of the contaminant source (L),
and rx, ry, rz are the standard deviations of the contaminant
source concentration (L2).

[33] After simplification, equation (12) reduces to

Cðx; y; z; tÞ5
Mð12qÞ exp 2kt2 ðx2x02utÞ2

2ð2Dxt1r2
x Þ

2
ðy2y0Þ2

2ð2Dyt1r2
yÞ

2
ðzÞ2

2ð2Dzt1r2
z Þ

h i
h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p3ð2Dxt1r2

xÞð2Dyt1r2
yÞð2Dzt1r2

z Þ
q

(14)

where it is assumed that z0 5 0 and there is a reflecting
boundary at the top of the aquifer (z 5 0). The effect of this
is that the concentration is doubled at every point since half
of the contaminant mass is reflected across the plane z 5 0.

[34] Two alternative remedial actions can be represented
using equation (14). The contaminant mass introduced in the
subsurface M may have been reduced by different fractions
q by some kind of remedial action such as pump-and-treat or
source removal. The contaminant mass migrating in the sub-
surface may also be reduced by some in situ treatment which
increases the reaction rate which is represented by increasing
k. This can be achieved by dispersing uniformly some bio-
mass throughout the plume that enhances the contaminant
decay. Both remedial actions are commonly applied for con-
taminant remediation of the subsurface.

[35] We wish to define an uncertainty model that explic-
itly incorporates uncertainty in the dispersion coefficients
and implicitly incorporates uncertainty in the other parame-
ters and the functional form of the concentration predic-
tions. As was done with the simple linear model, this can
be accomplished by combining two info-gap uncertainty
models. One is for uncertainty in the dispersion coeffi-
cients, and the other expands on this to include uncertainty
in the other parameters and the functional form. Uncer-
tainty in the dispersion coefficients is captured via

Uð�Þ5 ðDx;Dy;DzÞ :
����Dw2~Dw

~Dw

����< �;Dw � 0;8w2 x;y;zf gg; �� 0

(

(15)

[36] Broader uncertainty in the other parameters and
uncertainty in the functional form is captured via

Gð�; t; xÞ5 C :

����Cðx; t; �Þ2~Cðx; t; DÞ
~Cðx; t; DÞ

���� < �;8x;
(

for some D5ðDx;Dy;DzÞ 2 Uð�Þ
�
; � � 0

(16)

where ~Cðx; t; DÞ is the nominal model prediction with dis-
persion coefficients given by D, and Cðx; t; �Þ are model
predicted concentrations with models and parameters dif-
ferent from the nominal case. ~Cðx; t; DÞ is computed based
on equation (14). The functional form of Cðx; t; �Þ is neither
known nor necessary for the info-gap analysis. So, for
example, models that include heterogeneous parameters
will be included in Gð�; t; xÞ for � > 0, and the degree of
heterogeneity that is permitted will increase as � increases.
Many possible models exist within Gð�; t; xÞ, and it is
impossible to enumerate them all. It is only necessary to
compute the maximum predicted concentration over all ele-
ments of Gð�; t; xÞ at x at time t for each horizon of uncer-
tainty (�). Note that this allows for uncertainty in parameters
other than the dispersion coefficient (including k and q
which are important parameters characterizing potential
alternative remedial actions). With the proposed info-gap
uncertainty model (equation (16)) it is possible to take into
account lack of knowledge about the magnitude of naturally
occurring dispersion in the subsurface and how this lack of
knowledge will impact the design of remedial activities (i.e.,
how much to increase k and q through remedial activities
without over achieving the performance goals).

[37] It is important to note equation (16) allows for appli-
cation of alternative conceptual models (functional forms)
for computation of contaminant concentrations; in fact,
any functional form bounded by the info-gap uncertainty
model equation (16) (i.e., enveloped between the best and
worst predicted behavior based on equation (14) within
equation (16)) is taken into account. For example, uncer-
tainty in conceptual assumptions like non-Gaussian sour-
ces, non-Gaussian dispersion, nonzero-order reaction rates,
nonstationary dispersion, etc. These aspects of the info-gap
analysis are demonstrated for the case of Scenario 1 below.

[38] For any remedial activity, it is very important to
account for budgetary constraints. It is assumed that there
is some control over the biogeochemical reaction rate, but
inducing an increase in the reaction rate comes with addi-
tional cost. As a function of the price, Pk, the nominal reac-
tion rate is
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~kðPkÞ5k01max 0;
Pk2Sk

Ik

� �
; ½1=year � (17)

where Sk is a start-up cost and Ik is an incremental cost for
increasing k. Similarly, for the reduction of the introduced
contaminant mass in the subsurface ~q,

~qðPqÞ5max 0;
Pq2Sq

Iq

� �
(18)

where Pq, Sq, and Iq are the price, the start-up cost, and the
incremental cost associated with the fraction of the mass
removed q. Sometimes P will be used denote either Pk or
Pq depending on which remediation technique is under con-
sideration. All costs are left unitless. Here, the start-up
costs (Sk and Sq) represent the investment required to set
the remedial system in place (e.g., drilling wells, building
infrastructure, etc.). In some cases, the start-up costs may
be equal to zero if the infrastructure is already in place. The
incremental costs (Ikðk2k0Þ and Iqq) are additional invest-
ments to increase contaminant mass reduction. The pro-
posed methodology can be applied with much more
complicated models for estimation of the price of the reme-
dial activities.

[39] The performance requirement is that the concentra-
tion at a point of compliance located at xc5ðxc; yc; zcÞ be
below a threshold, Cc, at any time t> 0 (compliance time
range is tc050 and tc1 !1).

Cðxc; tÞ < Cc; 8t � 0 (19)

[40] In our case, the maximum concentration Cðxc; tÞ
will occur when the peak of the plume is the closest to the
point of compliance.

[41] This enables the computation of the maximum hori-
zon of uncertainty for which the threshold requirement
(equation (19)) is not violated. If the nominal prediction at
the point of compliance is above the threshold, then the
robustness is zero. Otherwise,

�̂ðxc; tÞ5max � � 0 : max
C2Gð�;t;xcÞ

Cðxc; tÞ
	 


< Cc

� �
: (20)

[42] Some calculus, algebra, and inspection (see Appen-
dix A for more information) implies that the inner maxi-
mum occurs when Cðxc; tÞ5ð11�Þ~Cðxc; t; D�Þ with

D�x5max 0; ð12�Þ~Dx;min ð11�Þ~Dx;
ðxc2x02utÞ22r2

x

2t

( )( )

(21)

D�y5max 0; ð12�Þ~Dy;min ð11�Þ~Dy;
ðyc2y0Þ22r2

y

2t

( )( )
(22)

D�z 5max 0; ð12�Þ~Dz;min ð11�Þ~Dz;
z2

c2r2
z

2t

� �� �
(23)

so the robustness (the outer maximum in equation (20)) is
obtained by solving for � in ð11�Þ~Cðx; t; D�Þ5Cc when
~Cðxc; t; D�Þ < Cc. When ~Cðxc; t; D�Þ � Cc, there is no
robustness and by convention �̂ðxc; tÞ50.

4. Application

[43] To demonstrate the applicability of the info-gap
approach to support decision making in subsurface contam-
inant remediation, two scenarios will be considered. For
both scenarios, two remediation choices are to either
remove contaminant mass directly, or increase reaction
rate. The performance of the remedial activities is eval-
uated using an info-gap model that takes into account lack
of knowledge about the magnitude of naturally occurring
dispersion in the subsurface. Both anthropogenic remedial
activities and natural dispersion impact model predicted
contaminant concentrations. In the first scenario, the point
of compliance is far enough downgradient from the current
plume that it will take �10 years for the concentration peak
to pass near the point of compliance. In the second sce-
nario, the point of compliance is much closer to the plume
center. It will only take �1 year for the concentration peak
to pass near the point of compliance. These scenarios are
consistent with typical site conditions and remedial needs.
In many practical situations, the developed relationships
can be directly applied by replacing the values for model
parameters used below with site-specific data.

4.1. Scenario 1

[44] In this scenario, the fixed parameters are

u530; ðm=year Þ (24)

x05ð0; 0; 0Þ; ðmÞ (25)

ðrx; ry; rzÞ5ð1; 1=5; 1=20Þ; ðm2Þ (26)

xc5ð300; 50; 10Þ; ðmÞ (27)

h51=10; ðm3=m3Þ (28)

M51000; ðkgÞ (29)

k051022; ð1=year Þ (30)

so that after t � 10; (year), the maximum concentrations are
observed at the point of compliance. Some or all of the fixed
parameters could also be info-gap uncertain and applied in a
more complex (likely numerical) info-gap analysis. The dis-
persion coefficients uncertain and their nominal values are

ð~Dx; ~Dy; ~DzÞ5ð30; 7; 1=10Þ; ðm2=year Þ (31)

[45] The contaminant flow is along the x axis; note the
point of compliance is not along the flow path with the peak
plume concentrations. Ten years is approximately the time
at which robustness is at a minimum, and will therefore be
the focus of our attention. The threshold concentration is

Cc525; ðg=m3Þ (32)

[46] It is assumed that there is a high start-up cost and a
low incremental cost for increasing the decay constant k
(relative to the costs for increasing q listed below),

Sk543106 (33)

Ik5107 (34)

[47] On the other hand, it is assumed that there is no
start-up cost and a high incremental cost for additional
contaminant-source removal q,
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Sq50 (35)

Iq5108 (36)

[48] Figure 3 displays the maximum possible concentra-
tions as a function of time for several horizons of uncer-
tainty based on the parameters. �50 represents the nominal
case; note that maximum concentration is observed at t �
12; years. For increasing uncertainty horizons �, the maxi-
mum concentrations within the info-gap uncertainty bounds
are at t � 10; years which is consistent with the site hydro-
geological conditions for Scenario 1 (discussed below).
The figure also shows as scatter plots the concentrations for
several plausible scenarios based on alternative parameter
values of physics-based models. Each of these plausible
scenarios are consistent with different uncertainty horizons
(Figure 3): enhanced dispersion (�)—consistent with � � 4,
heavy-tailed dispersion (	)—consistent with � � 4, and a
model with a secondary (earlier time arriving and less mas-
sive) source (1)—consistent with � � 2

[49] Figure 4 displays the robustness curves as a function
of the remediation budget of each of the two remediation
methods near the point where they cross. Figure 5 displays
the robustness curves over a larger budget range. Note the
robustness curves intersect when log 10P5log 10P0 � 6:6065.
If the available budget for reducing the contaminant concen-
trations is less than P0, source removal is the more robust
option. If the available budget is greater than P0, increasing
the reaction rate is more robust. Once Pk exceeds Sk, increas-
ing the reaction rate has a strong impact on the robustness.
This is not surprising considering that increasing the decay
constant decreases the mass exponentially. Given that a rela-
tively long period of time (�10 (year)) passes before the con-
centration peak passes near the point of compliance, even a
small increase in the decay constant can cause a significant
decrease in the predicted concentration.

[50] Figure 6 displays the maximum concentration as a
function of the horizon of uncertainty for each of the reme-
diation methods at time t 5 10; (year). In extreme cases

with relative error in the dispersion coefficients on the
order of 100%, the potential ratio between the transverse
and longitudinal dispersivities included in the uncertainty
model becomes unrealistically large. This is what causes
the sharp rise as �! 1. For all values of �, increasing the
decay constant produces a lower maximum concentration.
This is another indication that this is the preferred remedia-
tion option with a budget of P 5 107.

[51] Figure 7 displays robustness curves for several dif-
ferent values of Pk and Pq as a function of time. Note that
the robustness reaches a minimum for t near 10; (year)
when the highest concentrations are observed at the point
of compliance. Increasing spending to increase the decay
constant makes a significant increase in the robustness.
However, increasing spending to remove more mass has lit-
tle effect on the robustness in this range of Pq. The plots for

6 8 10 12 14 16 18 20
−35

−30

−25

−20

−15

−10

−5

0

t (Years)

Lo
g 10

 C
on

ce
nt

ra
tio

n 
[lo

g(
kg

/m
3 )]

ε=0
ε=1
ε=2
ε=4

Figure 3. Maximum concentration as a function of time
for several horizons of uncertainty (colors) and predicted
concentrations for enhanced dispersion (�), heavy-tailed
dispersion (	), and a model with a secondary (earlier time
arriving and less massive) source (1).
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Figure 4. Robustness curves of the two remediation
methods at t 5 10; [year] when the peak concentrations are
observed at the point of compliance showing the crossing
of the robustness curves.
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Figure 5. Robustness curves of the two remediation
methods at t 5 10; [year] when the peak concentrations are
observed at the point of compliance.

O’MALLEY AND VESSELINOV: GROUNDWATER REMEDIATION USING THE INFO-GAP DECISION THEORY

252



Pq nearly sit on top of one another in Figure 7. This pro-
vides additional evidence that in this scenario, increasing
the decay constant (contaminant reduction rate) is a more
robust remediation strategy.

4.2. Scenario 2

[52] This scenario is similar to the previous one, except
that the point of compliance is closer to the current plume
center, the initial mass is less, and the nominal ambient
decay constant (reaction rate) is greater. All nominal and
fixed parameters are unchanged except

xc5ð30; 10; 10Þ; ½m� (37)

k051; ð1=year Þ (38)

M5100; ðkgÞ (39)

and the cost structure has changed

Sk583105 (40)

Ik563106 (41)

Sq50 (42)

Iq5107 (43)

[53] Note that Iq has decreased by the same factor as M
which is in accordance with the concept of there being a
fixed incremental cost to remove a unit of mass of the
contaminant.

[54] Figure 8 depicts the robustness curves at t 5 1;
(year) for the two remediation strategies as a function of
the cost. In this case, the robustness of increasing the reac-
tion rate (decay constant k) is not as strong as in Scenario
1, largely because there is less time for the reactions to take
place before the concentration peak reaches the point of
compliance. Another factor in the relative robustness for
this scenario is the change in the cost structure. However,
unless a very high portion of the mass is removed (q! 1;
larger Pq), the robustness of the two methods as a function
of cost is comparable. The preferred remediation method in
this case depends strongly on P. For small and large P,
source removal provides greater robustness. For intermedi-
ate P, increasing the decay constant provides greater
robustness. Still, the cost differences are negligible.

[55] Furthering this point is Figure 9 which shows the
maximum concentration for the two remediation strategies
with P 5 106.9 at t 5 1; (year) as a function of the horizon
of uncertainty. The maximum concentrations for the two
remediation methods are close at every horizon of uncer-
tainty. When P 5 106.9 and t 5 1; (year), source removal
provides greater robustness and a lower maximum concen-
tration, but the differences are not large. Consulting Figure
10, it is seen that increasing the decay constant provides
greater robustness at later times, while mass reduction pro-
vides greater robustness at early times. This behavior is
expected. It demonstrates another important aspect associ-
ated with any decision analysis: to take into account time
constraints associated with the implementation of the reme-
dial activities. In this case, increased reaction rates take
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Figure 6. Maximum concentration as a function of the
horizon of uncertainty for the two remediation scenarios
with P 5 107 at t 5 10; [year].
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Figure 7. Several robustness curves as a function of time
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time to improve subsurface conditions. On the other hand,
source removal has a more immediate effect. In Scenario 1,
time was on the side of increasing the reaction rate. In Sce-
nario 2, time is short enough that source removal becomes
a viable option.

5. Discussion

[56] The physics-based model that we have employed
here is simple compared to many models that are frequently
used in subsurface hydrology. In many cases, a more com-
plex model may be needed, and we wish to provide a per-
spective on how information gap decision theory (IGDT)
can be applied in these cases. The challenges that are likely
to arise in the implementation of info-gap for more com-
plex models are primarily computational. For instance,
consider a complex numerical model with many parameters
(perhaps different dispersion coefficients in a number of

different hydrostratigraphic zones, a heterogeneous con-
ductivity field, complex boundary conditions, etc.) Devel-
oping an info-gap uncertainty model for these systems can
follow the approach we have used here (equation s (15) and
(16)). The difference being that equation (15) would con-
sider uncertainty in all the unknown model parameters
rather than just the dispersion coefficients, as has been
done here. The challenge associated with the added com-
plexity is found in equation (20). For high-dimensional
problems, the computation of the robustness function for a
series of horizons of uncertainties with different � values
will likely not be estimated analytically as it has been here.
It may require numerical optimization (maximization) tech-
niques that are computationally efficient, robust, and utilize
high-performance computing resources. However, the opti-
mization analyses do not necessitate exploring the whole
parameter space constrained by a given horizon of uncer-
tainty. Only regions in the parameter space where the con-
centrations are the highest need to be identified while
regions of intermediate and low concentrations need not be
characterized. As a result, the IGDT analyses are expected
to be less computationally expensive than, say, a probabil-
istic technique with a uniform distribution over the parame-
ter space.

6. Conclusion

[57] Decisions related to contaminant remediation are
often performed under severe uncertainty. The uncertain-
ties create challenges in predicting future contaminant con-
centrations which are impacted by naturally occurring
processes and remediation activities. Because of this, when
designing or deciding between remediation methods within
budget constraints, it is prudent to account for these uncer-
tainties. The approach used here is based on the info-gap
decision theory which accounts for lack of knowledge in
naturally occurring dispersion and the functional form of
the transport model. A sequence of info-gap analyses were
considered with increasing complexity. The terminal ele-
ment in this sequence involved an advection-diffusion con-
taminant spreading model tied to an uncertainty model
representing lack of knowledge about the magnitude of
contaminant dispersion in the subsurface and the functional
form of the transport model. This physics-based model for
contaminant concentrations upon which the info-gap uncer-
tainty model is based incorporates the effects of anthropo-
genic remedial activities and naturally occurring
dispersion. The info-gap analysis takes into account this
lack of knowledge and how it impacts the design of reme-
dial activities within specific budget constraints. The gen-
eral approach of the info-gap decision theory is to prefer
the remediation method that has the greatest robustness at a
fixed cost or the lowest cost at a fixed robustness level.
This approach was applied to two different scenarios. In
the first, a remediation approach based on increasing the
reaction rate was preferred. This was due in large part to
the fact that 10; (year) elapsed before the peak contaminant
concentrations are observed at the point of compliance. In
the other scenario, there was less clarity in the preferred
method, and it depended on the monetary price that could
be spent on remediation. These scenarios demonstrate that
info-gap decision theory provides a viable tool for
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Figure 9. Maximum concentration as a function of the
horizon of uncertainty for the two remediation scenarios
with P 5 106.9 at t 5 1; [year].
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supporting decisions related to contaminant remediation
taking into account uncertainties and implementation costs.

Appendix A: Maximizing Concentration as a
Function of Dispersion Coefficients

[58] Before maximizing equation (14) with respect to the
dispersion coefficients, observe that it can be rewritten as a
function of the dispersion coefficients

CðDx;Dy;DzÞ5A
Y

w2fx;y;zg

exp 2
ðw2w02uwtÞ2
2ð2Dwt1r2

wÞ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Dwt1r2

wÞ
p (A1)

where A is constant with respect to the dispersion coeffi-
cients and ðux; uy; uzÞ5ðu; 0; 0Þ. In order to maximize equa-
tion (A1) within the bounds given by equation (15), it is
sufficient to maximize

f ðDwÞ5
exp 2

ðw2w02uwtÞ2
2ð2Dwt1r2

wÞ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Dwt1r2

wÞ
p (A2)

within the interval I�5½max f0; ð12�Þ~Dwg; ð11�Þ~Dw�. Dif-
ferentiating with respect to Dw, we obtain

f 0ðDwÞ5
te

2
ðw2w02uwtÞ2

2ð2Dwt1r2
w Þ ðw2w02uwtÞ222Dwt2r2

w

� �
ð2Dwt1r2

wÞ
5=2

(A3)

[59] Setting this equal to zero and solving (ignoring the
case t 5 0), we obtain

D�w5
ðw2w02uwtÞ22r2

w

2t
(A4)

[60] Note that f 0ðDwÞ > 0 when Dw < D�w and f 0ðDwÞ
< 0 when Dw > D�w. Hence, D�w is a global maximizer. If
D�w 2 I� then the maximum within the interval is obtained
when Dw5D�w. If D�w > ð11�Þ~D�w then f ðDwÞ is increasing
on I� and the maximum is obtained at the right end point. If
D�w < max f0; ð12�Þ~D�wg then f ðDwÞ is decreasing on I�
and the maximum is obtained at the left end point. Putting
this in symbols,

D�w5max 0; ð12�Þ~Dw;min ð11�Þ~Dw;
ðwc2w02uwtÞ22r2

w

2t

( )( )

(A5)
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